

Lineup expanded with insert for high-hardness materials

MOLDINO Tool Engineering, Ltd. New Product News No.1604E-11 2022-11

Technology

Reduces uncut remnants on work pieces

The cutting edge shape was reviewed for TD4N so that uncut remnants are reduced. This enables the load on the next process to be reduced by up to 40% compared to conventional products.

· Since it is difficult to create tool shape definitions in CAM for the complicated cutting edge shapes of high-feed tools, in many cases the tools are used with the definition for a simple R radius tool. The differences between this definition and the actual tool shape result in uncut remnants that cannot be checked on CAM and become more work for the next process.

Economical 4-corner inserts with chip breakers for various applications

· By making it possible to use both the front and back sides of inserts, 4 corners can be used. The inserts are provided with a large rake angle which exhibits an excellent cutting force reduction effect even when compared to general positive-shape inserts.

Features of insert breaker

Features

Features

C breaker

02

Corresponds to our general high-feed-type inserts (EDNW, EPNW, WDNW, SDNW), and is resistant to chip jamming, vibrations, and crater wear.

B breaker

Enables reduced cutting force when cutting work materials such as stainless steels, etc. that require free-cutting performance.

0 Features of insert for high-hardness materials NEW

High-precision G-class insert suppresses dispersion in tool life. Employs JP4105, a grade for high-hardness materials which provides long service life for machining 50HRC or harder matrials.

Features 13 Large tip diameter for excellent handling

 Compared to conventional high-feed tools, TD4N has a large tip diameter, which suppresses the generation of uncut remnants which easily occur on the bottom surface of machined areas. In addition, since the cutting width (*a*e) can be set to a large value, this is also effective for improving machining efficiency.

Features **14** Excellent chip discharge characteristics

• Reduces the occurrence of sudden problems due to jamming of cutting chips. In addition, good chip removal makes it possible to further improve cutting performance.

Crushed cutting chips

If cutting chips are not discharged well, jamming of the cutting chips between the tool and wall occur, which can become the cause of sudden damage such as chipping, etc.

Good chip discharge characteristics are achieved by providing large chip pockets and controlling the chip discharge direction.

Cutting chips which were discharged well

Features 05 Lineup of insert grades

PVD Technology Grade for machining high-hardness materials JP4105

- Employs an ultra-fine cemented carbide substrate and the new "AJ Coating" to improve wear resistance.
- Excellent wear resistance when machining high hardness materials of 50HRC or higher.

PVD Technology Grade for machining pre-hardened or hardened materials JP4120

- Employs a fine carbide substrate with an excellent balance between wear resistance and toughness and the new "AJ Coating" to provide improved wear resistance and chipping resistance.
- Highly versatile with excellent wear resistance and chipping resistance when machining steel materials with hardnesses of 30 to 50 HRC.

PVD Technology

Grade for machining stainless-steel materials JM4160

- Employs a carbide substrate with high toughness and the new "AJ Coating" to improve wear resistance and chipping resistance when machining stainless-steel materials.
- \cdot Reduces the welding to work material that occurs when machining stainless steel materials.

PVD Technology General purpose for steel JS4045

- · JS4045 adopts heat resistant layer, reduces the crater wear by high-speed cutting.
- · JS4045 adopts heat resistant substrate, reduces the wear and improves tool life.
- Improves tool life on dry cutting.

CVD Technology General purpose for steel GX2140

- · Smooth surfaced α-Al₂O₃ layer with improved chipping / welding resistance brings less sudden-tool-edge-chipping.
- Machining efficiency is improved for high-speed, high-feed-rate rough machining by using the layer with fine columnar structure.

Line Up

TD4N2000 (32)-0 Shank type

Туре							Size	(mm)						
		Item Code	Stock	No.of Flutes	DCX	DC	LF	LH	LS	DCONMS	Shape	Recommended insert		
2000		TD4N2016S-2		2	16	10	100	30	70	16				
	lar	TD4N2020S-3		З	20	14	130	50	80	20	Fig 1			
	gu	TD4N2025S-4		4	25	19	140	60	80	25	FIG. I			
	Å	TD4N2032S-5		5	32	26	150	70	80	32				
		TD4N2040S32-6		6	40	34	150	45	105	32	Fig.2			
þe		TD4N2016L-2		2	16	10	150	50	100	16	Fig.1			
< ty		TD4N2018L-2		2	18	12	150	25	125	16	Fig.2	ENMU0603ER-B/C		
anł		TD4N2020L-3		3	20	14	160	80	80	20	Fig.1	ENGU0603ER-C		
Sh	D	TD4N2022L-3		3	22	16	160	30	130	20	Fig.2			
	ouć	TD4N2025L-4		4	25	19	180	100	80	25	Fig.1			
		TD4N2028L-4		4	28	22	180	35	145	25	Fig.2			
		TD4N2032L-5		5	32	26	200	120	80	32	Fig.1			
		TD4N2035L-5		5	35	29	200	40	160	32	Fig.2			
		TD4N2040L32-6		6	40	34	220	45	175	32	Fig.2			

TD4N200**M-**0 Modular type

Numeric figure comes in a circle $\langle 0 \rangle$.

With air hole

Item Code	Stock	No.of Flutes	DCX	DC	LF	<i>L</i> 1	L2	DCONMS	DHUB	THSZMS	DRVS	Recommended insert		
TD4N2016M-2		2	16	10	25	5.5	17	8.5	12.8	M8	10			
*TD4N2018M-2		2	18	12	25	5.5	17	8.5	12.8	M8	10			
TD4N2020M-3		3	20	14	30	5.5	19	10.5	17.8	M10	15			
*TD4N2022M-3		3	22	16	30	5.5	19	10.5	17.8	M10	15			
TD4N2025M-4		4	25	19	35	5.5	22	12.5	20.8	M12	17	ENMU0603ER-B/C		
*TD4N2028M-4		4	28	22	35	5.5	22	12.5	20.8	M12	17	ENGU0603ER-C		
TD4N2032M-5		5	32	26	40	6	23	17	28.8	M16	22			
*TD4N2035M-5		5	35	29	40	6	23	17	28.8	M16	22			
*TD4N2040M-6		6	40	34	40	6	23	17	28.8	M16	22			
*TD4N2042M-6		6	42	36	40	6	23	17	28.8	M16	22			

[Note] When ** and carbide shank are used together as a set, there is no interference. Do not apply lubricants to the threaded section or end surface sections in contact with the dedicated shank/arbor for modular mills.

Parts						
Parts	Clamp scr	ew	Screw Driver	Screw anti-seizure agent		
Shape		Fastening torque (N • m)				
Item Code	250-141	1.1	104-T8	P-37		

[Note] The clamp screw is a consumable part. Since replacement life depends on the use environment, it is recommended that it be replaced at an early stage.

Stocked Items.

Insert

[Note] Please note that the GX Coating and JS Coating do not cause a reaction in conductive touch sensors.

The Shanks for Modular Mill

Carbide shank

		Size (mm)									Cutter	With/
Item code	Stock	DCONWS	THSZWS	LF	LB1	LS	BD1	DCONMS	D1	Туре	body	without air hole
ASC16-8.5-95-30Z				95	30	65						
ASC16-8.5-120-55Z				120	55	65						
ASC16-8.5-140-75Z		8.5	M8	140	75	65	14.5	16	15.5	С	<i>ф</i> 16	\bigcirc
ASC16-8.5-160-95Z				160	95	65						
ASC16-8.5-160-30Z				160	30	130						
ASC20-10.5-120-50Z				120	50	70			19.5			\bigcirc
ASC20-10.5-170-90Z		10 5	M10	170	90	80	18.5	20		C	4 20	
ASC20-10.5-220-120Z		10.5		220	120	100					Ψ20	0
ASC20-10.5-270-150Z				270	150	120						
ASC20-10.5-220-50Z		10.5	M10	220	50	170	195	20	10.5	6	A 20	\bigcirc
ASC20-10.5-270-50Z			N/10	270	50	220	10.5	20	19.5		Ψ20	0
ASC25-12.5-145-65			M12	145	65	80	23					
ASC25-12.5-215-115		125		215	115	100		25		E	# 2E	\bigcirc
ASC25-12.5-265-145		12.5		265	145	120		25			Ψ25	0
ASC25-12.5-315-195				315	195	120						
ASC25-12.5-265-65		125	M12	265	65	200	22	25		E	4.05	0
ASC25-12.5-315-65		12.5	IVI I Z	315	05	250	23	25	-	E	Ψ25	
ASC32-17-160-80				160	80	80						
ASC32-17-210-110]		210	110	100					<i>ф</i> 32	
ASC32-17-260-140		17	M16	260	140	120	28	32	-	E	$\langle \phi 40 \rangle$	\bigcirc
ASC32-17-310-190				310	190	120					〈 <i>ϕ</i> 42〉	
ASC32-17-360-240				360	240	120						
ASC32-17-260-80				260		180					φ30	
ASC32-17-310-80		17	M16	310	80	230	28	32	-	E	φ32 (φ40)	\bigcirc
ASC32-17-360-80		1		360		280					$\langle \phi 42 \rangle$	

[Note] ① Commercial milling chucks or shrink-fit holders can be used. ② For the *φ* 40, *φ* 42 size, it is recommended that the protrusion length be 200mm or less. ③ Types for the dedicated arbor (HSK-A63) and for steel shanks are standard stock items.

★ : Stocked Items of New products. ● : Stocked Items.

Recommended Cutting Conditions

								*	Red indicat	tes primary re	commended	insert grade
Mark motorial	Recommended	Tool dia. DCX	<i>ф</i> 16(2	flutes)	<i>ф</i> 20(3	flutes)	<i>φ</i> 25(4	flutes)	φ32(5	5 flutes)	<i>\$</i> 40(6	flutes)
work material	inserts grade	Overhang	~ 3DCX	4DCX~7DCX	~ 3DCX	IDCX~7DCX	~ 3DCX	4DCX~7DCX	\sim 3DCX	4DCX~7DCX	\sim 3DCX	4DCX~7DCX
		n (min-1)	3380	2990	2710	2390	2170	1910	1690	1490	1350	1190
		Vc(m/min)	170	150	170	150	170	150	170	150	170	150
Carbon steels	*	Vf(mm/min)	6760	4780	8130	5730	10410	9160	10140	8940	9720	8560
Allov steels	GX2140	fz(mm/t)	1	0.8	1	0.8	1.2	1.2	1.2	1.2	1.2	1.2
<30HRC	JS4045	ap(mm)	0.6	0.6	0.6	0.6	0.6	0.6	0.5	0.5	0.5	0.5
		ae(mm)	10	10	14	14	19	19	22	22	28	28
		Q (cm ³ /min)	41	29	68	48	158	104	112	98	136	120
		<i>n</i> (min-1)	2990	2590	2390	2070	1910	1660	1490	1290	1190	1040
		Vc(m/min)	150	130	150	130	150	130	150	130	150	130
Alloy steels	IP4120	Vf(mm/min)	5980	4140	7170	4960	7640	6640	7450	6450	7140	6240
Tool steels	194045	fz(mm/t)	1	0.8	1	0.8	1	1	1	1	1	1
30 ~ 40HRC	J34045	a p(mm)	0.6	0.6	0.6	0.6	0.6	0.6	0.5	0.5	0.5	0.5
		a e(mm)	10	10	14	14	19	19	22	22	28	28
		Q (cm3/min)	36	25	60	42	116	76	82	71	100	87
		<i>n</i> (min-1)	1990	1790	1590	1430	1270	1150	1000	900	800	720
Pre-Hardened		Vc(m/min)	100	90	100	90	100	90	100	90	100	90
steels	JP4120	Vf(mm/min)	3980	2860	4770	3430	5080	3680	5000	3600	4800	3450
Allov steels	154045	fz(mm/t)	1	0.8	1	0.8	1	0.8	1	0.8	1	0.8
	004040	ap(mm)	0.6	0.5	0.6	0.5	0.6	0.5	0.5	0.5	0.5	0.5
40 SUNKC		ae(mm)	10	10	14	14	19	19	22	22	28	28
		Q (cm3/min)	24	14	40	24	58	35	55	40	67	48
		<u>n (min-1)</u>	1990	1790	1590	1430	1270	1150	1000	900	800	720
		Vc(m/min)	100	90	100	90	100	90	100	90	100	90
Stainless steels	18444.00	Vf(mm/min)	3980	2860	4770	3430	5080	3680	5000	3600	4800	3450
SUS	JIVI4100	72(mm/t)		0.8		0.8		0.8		0.8		0.8
		ap(mm)	0.0	0.5	0.0	0.5	0.0	0.5	0.5	0.5	0.5	0.5
			10	10	14	14	19	19		22	20	20
			2090	2590	2190	24	2550	2200	1000	40	1500	40
		$N_{\rm c}(m/min)$	200	180	200	180	200	180	200	180	200	1430
Cast irons		Vf(mm/min)	9550	7160	11440	8610	12240	9160	11040	8950	11440	8580
	JP4120	$f_{7}(mm/t)$	9550	1 1	11440	1 0010	12240	9100	1 940	0950	11440	0000
	GX2140	$a_{n(mm)}$	0.8	06	0.8	06	0.8	06	0.8	06	0.8	06
FCD			10	10	14	14	19	19	22	22	28	28
		$O(cm_3/min)$	76	43	128	72	186	104	210	118	256	144
		n (min-1)	1590	1390	1270	1110	1020	890	800	700	640	560
		Vc(m/min)	80	70	80	70	80	70	80	70	80	70
High-hardened	104405	Vf(mm/min)	1270	890	1530	1070	1630	1140	1590	1110	1530	1070
steels	JP4105	$f_{z(mm/t)}$	0.4	0.32	0.4	0.32	0.4	0.32	0.4	0.32	0.4	0.32
$50 \sim 55 HPC$	JP4120	ap(mm)	0.3	0.2	0.3	0.2	0.3	0.2	0.3	0.2	0.3	0.2
50 551110		ae(mm)	10	10	14	14	19	19	24	24	30	30
		Q (cm ³ /min)	4	2	6	3	9	5	11	6	14	7
		n (min-1)	1190	1190	950	950	760	760	600	600	480	480
		Vc(m/min)	60	60	60	60	60	60	60	60	60	60
High-hardened		Vf(mm/min)	720	570	860	690	920	730	900	720	860	690
steels	JP4105	fz(mm/t)	0.3	0.24	0.3	0.24	0.3	0.24	0.3	0.24	0.3	0.24
$55 \sim 62 HRC$		ap(mm)	0.3	0.2	0.3	0.2	0.3	0.2	0.3	0.2	0.3	0.2
		a e(mm)	10	10	14	14	19	19	24	24	30	30
		Q (cm ³ /min)	2	1	4	2	5	3	6	4	8	4

[Note]

Ram

① Use the appropriate coolant for the work material and machining shape.

© Conditions are for general guidance on shoulder face milling. In actual machining conditions please adjust the parameters according to your actual machine and work-piece conditions. Especially when the chip discharge or vibration is a problem in Slotting or near Reduce depth of cut (ap) to 50 to 70%.
 Reduce number of revolution(n) and feed rate(Vf) to 50 to 70%.

(mm)

φ42

0.3

③ Please note that the GX Coating and JS Coating do not cause a reaction in conductive touch sensors.
 ④ GX2140 should be used for dry cutting.

ⓑ To prevent tool damage due to chip clogging, always use a chip removal method such as an air blower, etc.

⑥ Ensure to exchange the insert at the correct time to ensure safety of the tool-body.

The following equation can be used to determine the metal removal rate per unit time Q:

 $Q(cm^3/min) = a_p(mm) \times a_e(mm) \times Vf(mm/min) / 1000$

Helical milling

0 Regarding ramping and helical milling diameter

	Tool dia. DCX	<i>ф</i> 16	¢18	<i>ф</i> 20	φ22	¢25				
angle 8 Ramping	Maximum ramp angle θ	0.8	0.8	0.8	0.8	0.8				
	Hole Dia.	24 ~ 30	$28 \sim 34$	32~38	$36 \sim 42$	42~48				
Hole Dia.	Cutting depth per rotation should be set to $ap = 1 \text{ mm or less.}$									

chip removal and checking that there are no abnormal vibrations

φ28

0.6

φ32

0.5

φ35

0.5

 $48 \sim 54$ | $56 \sim 62$ | $62 \sim 68$ | $72 \sim 78$ | $76 \sim 82$

φ40

0.3

(2) The ramp angle θ should be set within the ranges listed above. Use at ramp angles of 0.5° or less is recommended. ③ For hole diameters outside the ranges listed above, a pilot hole should be drilled before milling.

0 Points requiring care when creating the machining program

· In CAM, define the tool shape as an R2.0 radius shape.

Programming R (mm)	Remains (mm)	Over Cut (mm)	
R3.0	0	0.4	
Recommended R2.0	0.2	0	
R1.5	0.3	0	

Field data

01 Shortened machining time

[Work material] Pre-hardened steels (40HRC) [Tool] TD4N2032S-5(\$\$\phi_32-5\$ flutes) ENMU0603ER-B(JP4120) [Cutting conditions] Vc=100m/min Vf=9000mm/min(fz=1.8mm/t) ap×ae=0.6×20mm Air-blow

•90-minute machining time shortened to approx. 30 minutes.

02 Improved tool life

[Work material] Carbon steels [Tool] TD4N2020S-3(¢20-3 flutes) ENMU0603ER-B(JP4120) [Cutting conditions] Vc=140m/min Vf=5000mm/min(fz=0.75mm/t) ap×ae=0.8×10mm Emulsion oil

Completed machining with normal wear without large chipping.

[Work material] High-hardened steels(60HRC) [Tool] TD4N2025M-4(¢25-4 flutes) ENGU0603ER-C (JP4105) ipping. [Cutting conditions] Vc=80m/min Vf=1220mm/min(fz=0.3mm/t) ap×ae=0.2×15mm

Air-blow

• Even after 60 minutes machining, wear is small and possible to use continuously.

03 High-performance machining when clamp rigidity is weak.

[Work material] Mild steels [Tool] TD4N2032S-5(¢32-5 flutes) ENMU0603ER-C (JS4045) [Cutting conditions] Vc=200m/min Vf=8000mm/min(fz=0.8mm/t) ap×ae=0.5×20mm Emulsion oil

• Even after machining 200 pcs., wear is small and good.

High-feed tools lineup

		Fea	ture		Holder Insert					
Туре	Economical (No. of corners)	High accuracy (Less uncut remnants)	Supports for high-hardened steel	Efficiency (No. of Flutes)	Tool dia. (mm)	No. of corners	Shape	Inscribed circle code	Programming R (mm)	APMX (mm)
TD4N	O	O	\sim 62HRC	O High Efficiency multiflutes	<i>ф</i> 16∼40	4	0	06	2.0	1.0
ASR			0		140.00	0		06	2.0	1.5
Multi-Flutes		0	~62HRC	multiflutes	<i>\\$</i> 16~66	2		12	3.0	2.0
ASRF-mini	O		~62HRC	O General	¢ 20∼63	4		07	2.0	1.2
ASR		0	 ~60HRC	O General	\$ 20~100	2		08~15	20	
ASRT	0	0	⊖ ~62HRC	O General	φ25~100	3	0	09~14	5.0	2.0
ASRF 🗊	0		~60HRC	O General	<i>ф</i> 32∼100	4		12	4.5	
		0	~50HRC	0	d 50∼125	6		14		1.5
			501110	General	φ30 123	5		14	4 2 5	3.0
TRAF 🔍	0		0	0	ሐ 32∼125	Δ		12		1.2
	0		~60HRC	General	<i>ψ</i> 32~125	4		15		2.0

% Various other tools for roughing are also available.

* For more information on tool specifications, please refer to our general catalog or visit our website. (http://www.moldino.com)

The diagrams and table data are examples of test results, and are not guaranteed values. "MOLDINO" is a registered trademark of MOLDINO Tool Engineering, Ltd.

Attentions on Safety

1. Attentions regarding handling

- (1) When removing the tool from the case (package), be careful not to drop it on your foot or drop it onto the tips of your bare fingers.
 (2) When actually setting the inserts, be careful not to touch the cutting flute directly with your bare hands.
- 2. Attentions regarding mounting
 - When preparing for use, be sure that the inserts are firmly mounted in place and that they are firmly mounted on the arbor, etc.
 If abnormal chattering occurs during use, stop the machine immediately and remove the cause of the chattering.

3. Attentions during use

- Before use, confirm the dimensions and direction of rotation of the tool and milling work material.
 The numerical values in the standard cutting conditions table should be used as criteria when starting new work. The cutting conditions should be adjusted as appropriate when the cutting depth is large, the rigidity of the machine being used is low, or according to the conditions of the work material.
- (3) The inserts are made of a hard material. During use, they may break and fly off. In addition, cutting chips may also fly off. Since there is a danger of injury to workers, fire, or eye damage from such flying pieces, a safety cover should be installed and safety equipment such as safety glasses should be worn to create a safe environment for work.

 - Do not use where there is a risk of fire or explosion.
 Do not use non-water-soluble cutting oils. Such oils may result in fire.
- (4) Do not use the tool for any purpose other than that for which it is intended, and do not modify it.

MOLDINO Tool Engineering,	MOLDINO Tool Engineering, Ltd.							
Head Office	Head Office							
Hulic Ryogoku Bldg. 8F, 4-31-11, Ryogoku, Sumida-ku, Tokyo, Japan 130-1	Hulic Ryogoku Bldg. 8F, 4-31-11, Ryogoku, Sumida-ku, Tokyo, Japan 130-0026							
International Sales Dept. : TEL +81-3-6890-5103 FAX +81-3-6890-5128	International Sales Dept. : TEL +81-3-6890-5103 FAX +81-3-6890-5128							
Europe MOLDINO Tool Engineering Europe GmbH Itterpark 12, 40724 Hilden, Germany. Tel +49-(0)2103-24820 Fax +49-(0)2103-248230 China MOLDINO Tool Engineering (Shanghai), Ltd. Room 2604-2605, Metro Pitzaz, 555 Loushanguan Road, Changning Disctrict, Shanghai, 200051, China Tel +86-(0)21-3366-3050 America MITSUBISHI MATERIALS U.S.A. CORPORATION DETROIT OFFICE Customer service 41700 Gardenbrook Road, Suite 120, Novi, MI 48375-1320 U.S.A. Tel +1(248) 308-2620 Fax +1(248) 308-2627 Mexico MMC METAL DE MEXICO, S.A. DE C.V. Av. La Cafada No.16, Parque Industrial Bernardo Quintana, El Marques, Querétaro, CP 76246, México Tel +52-442-1926800	Brazil MMC M Rua Cinci Tel +55(11 Thailand MMC H 622 Empo Bangkok 1 Tel +66-(0 India MMC H H.O.: Pras Industrial Tel +91-80	The second state of the se						

